SHORT COMMUNICATIONS

Acta Cryst. (1996). A52, 955-956

Vector algebra and crystallography

Jean Sivardière at CEA/Département de Recherche Fondamentale sur la Matière Condensée/MRS, 38054 Grenoble CEDEX 9, France
(Received 15 May 1996; accepted 2 August 1996)

Abstract

The volumes of a crystal unit cell and of its reciprocal cell, the relationships between direct and reciprocal interaxial angles and the coordinates of the reciprocal vectors in the direct basis are rederived in a concise way by means of an elementary formula in vector algebra. The product of two rotations is also considered.

The volumes of the direct and reciprocal cells of a crystal and the relationships between direct- and reciprocal-lattice quantities are classically derived using the algebra of determinants and spherical crystallography or advanced vector methods such as Lagrange formulas for products of four vectors. We present here a simple vector formula from which all these quantities are then rederived. Finally, the relationships between direct- and reciprocal-lattice quantities are applied to spherical trigonometry and the product of two rotations.

Consider three linearly independent vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and introduce the coordinates x, y, z of \mathbf{c} in the $\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}$ basis:

$$
\mathbf{c}=x \mathbf{a}+y \mathbf{b}+z \mathbf{a} \times \mathbf{b}
$$

Taking the scalar product of this relation successively by \mathbf{a}, \mathbf{b} and $\mathbf{a} \times \mathbf{b}$, we find:

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{c}=x a^{2}+y \mathbf{a} \cdot \mathbf{b} \\
& \mathbf{b} \cdot \mathbf{c}=x \mathbf{a} \cdot \mathbf{b}+y b^{2} \\
& (\mathbf{a}, \mathbf{b}, \mathbf{c})=z|\mathbf{a} \times \mathbf{b}|^{2} .
\end{aligned}
$$

Using the Lagrange identity

$$
|\mathbf{a} \times \mathbf{b}|^{2}=a^{2} b^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}
$$

we get finally the 'basic' formula

$$
\begin{align*}
|\mathbf{a} \times \mathbf{b}|^{2} \mathbf{c}= & {\left[b^{2}(\mathbf{a} \cdot \mathbf{c})-(\mathbf{a} \cdot \mathbf{b})(\mathbf{b} \cdot \mathbf{c})\right] \mathbf{a} } \\
& +\left[a^{2}(\mathbf{b} \cdot \mathbf{c})-(\mathbf{a} \cdot \mathbf{b})(\mathbf{a} \cdot \mathbf{c})\right] \mathbf{b}+(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mathbf{a} \times \mathbf{b} . \tag{1}
\end{align*}
$$

(a) Suppose that the three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ define a crystal unit cell: the cell edges are a, b, c and the interaxial angles are α, β, γ. The volume V of the cell is equal to the triple scalar product $(\mathbf{a}, \mathbf{b}, \mathbf{c})=\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$. Taking the scalar product of (1) by \mathbf{c}, we get the classical expression (Buerger, 1942; Carpenter, 1969; Neustadt \& Cagle, 1968; Woolfson, 1970):
$v^{2}=a^{2} b^{2} c^{2}\left(1+2 \cos \alpha \cos \beta \cos \gamma-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma\right)$,
which is generally derived using the theory of determinants. An interesting equivalent expression is (Donnay \& Donnay, 1959)

$$
v^{2}=4 a^{2} b^{2} c^{2}[\sin s \sin (s-\alpha) \sin (s-\beta) \sin (s-\gamma)]
$$

with $2 s=\alpha+\beta+\gamma$.
(b) Consider now the reciprocal vectors $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}$. We want to determine the reciprocal-cell edges a^{*}, b^{*}, c^{*}, the interaxial angles $\alpha^{*}, \beta^{*}, \gamma^{*}$ and the coordinates of the reciprocal vectors in the $\mathbf{a}, \mathbf{b}, \mathbf{c}$ basis. Since $\nu \mathbf{c}^{*}=\mathbf{a} \times \mathbf{b}$, we have $c^{*}=$ $a b \sin \gamma / v$. Equation (1) gives immediately the expression for c^{*} in the direct basis:

$$
\begin{align*}
v^{2} \mathbf{c}^{*}= & {\left[(\mathbf{a} \cdot \mathbf{b})(\mathbf{b} \cdot \mathbf{c})-b^{2}(\mathbf{a} \cdot \mathbf{c})\right] \mathbf{a} } \\
& +\left[(\mathbf{a} \cdot \mathbf{b})(\mathbf{a} \cdot \mathbf{c})-a^{2}(\mathbf{b} \cdot \mathbf{c})\right] \mathbf{b}+|\mathbf{a} \times \mathbf{b}|^{2} \mathbf{c} \tag{3}
\end{align*}
$$

or

$$
\begin{align*}
v^{2} \mathbf{c}^{*}= & a b^{2} c(\cos \alpha \cos \gamma-\cos \beta) \mathbf{a} \\
& +a^{2} b c(\cos \beta \cos \gamma-\cos \alpha) \mathbf{b}+a^{2} b^{2} \sin ^{2} \gamma \mathbf{c}
\end{align*}
$$

Comparing this with the general expression

$$
\begin{equation*}
\mathbf{c}^{*}=\left(\mathbf{a}^{*} \cdot \mathbf{c}^{*}\right) \mathbf{a}+\left(\mathbf{b}^{*} \cdot \mathbf{c}^{*}\right) \mathbf{b}+\left(\mathbf{c}^{*} \cdot \mathbf{c}^{*}\right) \mathbf{c} \tag{4}
\end{equation*}
$$

and equating the coefficients of \mathbf{b} in (3) and (4), we get the angle α^{*} :

$$
\begin{equation*}
\cos \alpha^{*}=(\cos \beta \cos \gamma-\cos \alpha) / \sin \beta \sin \gamma \tag{5}
\end{equation*}
$$

Combining (3^{\prime}) and (5) gives

$$
\begin{align*}
v^{2} \mathbf{c}^{*}= & a^{2} b c \sin \alpha \sin \gamma \cos \beta^{*} \mathbf{a} \\
& +a b^{2} c \sin \beta \sin \gamma \cos \alpha^{*} \mathbf{b}+a^{2} b^{2} \sin ^{2} \gamma \mathbf{c} \tag{6}
\end{align*}
$$

Calculating $\sin \alpha^{*}$ from (5) and (2) gives

$$
\begin{equation*}
v=a b c \sin \beta \sin \gamma \sin \alpha^{*} \tag{7}
\end{equation*}
$$

and the sine relation

$$
\begin{equation*}
\frac{\sin \alpha}{\sin \alpha^{*}}=\frac{\sin \beta}{\sin \beta^{*}}=\frac{\sin \gamma}{\sin \gamma^{*}} \tag{8}
\end{equation*}
$$

The volume v^{*} of the reciprocal cell is given by an expression similar to (7) and, from (8), one gets $\nu v^{*}=1$.
(c) We translate now some of the preceding results into the language of spherical trigonometry. $\cos \gamma^{*}$ is given by a relation similar to (5) and the reciprocal relation is

$$
\begin{equation*}
\cos \gamma^{*}=\cos \alpha^{*} \cos \beta^{*}-\sin \alpha^{*} \sin \beta^{*} \cos \gamma \tag{9}
\end{equation*}
$$

Using (7) in the form $v=a b c \sin \alpha \sin \beta \sin \gamma^{*}$ and (8), we may write (6) as

$$
\begin{align*}
a b c \sin \alpha^{*} \sin \beta^{*} \mathbf{a} \times \mathbf{b}= & a^{2} b c \sin \alpha^{*} \cos \beta^{*} \mathbf{a} \\
& +a b^{2} c \sin \beta^{*} \cos \alpha^{*} \mathbf{b}+a^{2} b^{2} \sin \gamma^{*} \mathbf{c} \tag{10}
\end{align*}
$$

Suppose that the extremities A, B and C of the three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are on a unit sphere centered at the origin:
$a=b=c=1$. The side lengths of the spherical triangle are equal to the interaxial angles α, β, γ and its dihedral angles are $\pi-\alpha^{*}, \pi-\beta^{*}, \pi-\gamma^{*}$. Using now the classical notations a, b, c for the side lengths and α, β, γ for the dihedral angles, we get from (9) and (10), respectively,

$$
\begin{equation*}
\cos \gamma=-\cos \alpha \cos \beta+\sin \alpha \sin \beta \cos c \tag{11}
\end{equation*}
$$

$\sin \gamma \mathbf{c}=\sin \alpha \cos \beta \mathbf{a}+\cos \alpha \sin \beta \mathbf{b}+\sin \alpha \sin \beta \mathbf{a} \times \mathbf{b}$.

These formulas were found by Altmann by a more sophisticated procedure (Altmann, 1986). They can be used to derive the product of two rotations around intersecting axes from the Euler-Rodrigues-Hamilton theorem (Altmann, 1986; Sivardière, 1994, 1995). According to this theorem, a rotation of angle $\theta_{1}=2 \alpha$ around $\mathbf{u}_{1}=\mathbf{a}$ followed by a rotation of angle $\theta_{2}=2 \beta$ around $\mathbf{u}_{2}=\mathbf{b}$ is a rotation of angle $\theta_{3}=2(\pi-\gamma)$ around the unit vector $\mathbf{u}_{3}=\mathbf{c}$. Introducing the Euler vectors $\mathbf{R}_{i}=\sin \left(\theta_{i} / 2\right) \mathbf{u}_{i}$, we obtain

$$
\begin{aligned}
\cos \left(\theta_{3} / 2\right) & =\cos \left(\theta_{1} / 2\right) \cos \left(\theta_{2} / 2\right)-\mathbf{R}_{1} \cdot \mathbf{R}_{2} \\
\mathbf{R}_{3} & =\cos \left(\theta_{2} / 2\right) \mathbf{R}_{1}+\cos \left(\theta_{1} / 2\right) \mathbf{R}_{2}-\mathbf{R}_{1} \times \mathbf{R}_{2}
\end{aligned}
$$

References

Altmann, S. L. (1986). Rotations, Quaternions and Double Groups. Oxford: Clarendon Press.
Buerger, M. J. (1942). X-ray Crystallography. New York: John Wiley.
Carpenter, G. B. (1969). Principles of Crystal Structure Determination. New York: Benjamin.
Donnay, J. D. H. \& Donnay, G. (1959). In International Tables for X-ray Crystallography, Vol. II. Birmingham: Kynoch Press.
Neustadt, R. J. \& Cagle, F. W. (1968). Acta Cryst. A24, 247-248.
Sivardière, J. (1994). Am. J. Phys. 62, 737-743.
Sivardière, J. (1995). La Symétrie en Mathématiques, Physique et Chimie. Grenoble: Presses Universitaires de Grenoble.
Woolfson, M. M. (1970). An Introduction to X-ray Crystallography. Cambridge University Press.

